

The Python AsyncIO REST API Framework

(REST Resource Application Server)

Guillotina is the only full-featured Python AsyncIO REST Resource Application
Server designed for high-performance, horizontally scaling solutions. It is a
high performance web server based on many of the technologies and lessons learned
from Plone, Pyramid, Django and others all while utilizing Python’s great AsyncIO library.

Using Python’s AsyncIO, it works well with micro-service oriented environments.

	Features:

	
	REST JSON API

	Built-in authentication/authorization, built-in JWT support

	Hierarchical data/url structure

	Permissions/roles/groups

	Fully customizable permission/roles/groups based on hierarchical data structure

	Robust customizable component architecture and configuration syntax

	Content types, dynamic behaviors

	Built-in CORS support

Detailed Documentation

	About
	History lesson

	What it isn’t

	Quickstart
	Postgresql installation instructions

	Creating a container

	REST API Reference
	Application

	Database

	Container

	Folder

	Item

	Installation/Configuration/Deployment
	Installation

	Configuration

	Production

	Logging

	Awesome Guillotina

	Developer documentation
	Narrative

	Security

	Roles

	Applications

	Add-ons

	Services

	Content types

	Behaviors

	Interfaces

	Commands

	Application Configuration

	Overriding Configuration

	Design

	Persistence

	Blobs

	Router

	Exceptions

	Fields

	API Reference

	Training
	Introduction

	Installing Guillotina

	Starting Guillotina

	Configuration

	Using the Guillotina API

	AsyncIO

	Extending

	Commands

	Kitchen Sink

What is Guillotina like?

Example configuration:

applications:
- guillotina_dbusers
- myapp
databases:
- db:
 storage: postgresql
 dsn:
 scheme: postgres
 dbname: guillotina
 user: postgres
 host: localhost
 password: ''
 port: 5432
port: 8080
root_user:
 password: root

Example service:

from guillotina import configure

@configure.service(name='@foobar')
async def foobar(context, request):
 return {"foo": "bar"}

Example content type:

from guillotina import configure
from guillotina import content
from guillotina import Interface
from guillotina import schema

class IMyType(Interface):
 foobar = schema.TextLine()

@configure.contenttype(
 type_name="MyType",
 schema=IMyType,
 behaviors=["guillotina.behaviors.dublincore.IDublinCore"])
class Foobar(content.Item):
 pass

Example usage:

	
POST /db/container

	Create MyType

Example request

POST /db/container HTTP/1.1
Accept: application/json
Content-Type: application/json
Authorization: Basic cm9vdDpyb290

{
 "@type": "MyType",
 "id": "foobar",
 "foobar": "foobar"
}

Example response

HTTP/1.1 201 OK
Content-Type: application/json

	Request Headers

	
	Authorization [https://tools.ietf.org/html/rfc7235#section-4.2] – Required token to authenticate

	Status Codes

	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Invalid Auth code

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Error processing request

	
GET /db/container/foobar/@foobar

	Get MyType

Example request

GET /db/container/foobar HTTP/1.1
Accept: application/json
Authorization: Basic cm9vdDpyb290

Example response

HTTP/1.1 201 OK
Content-Type: application/json

{"foo": "bar"}

	Request Headers

	
	Authorization [https://tools.ietf.org/html/rfc7235#section-4.2] – Required token to authenticate

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Invalid Auth code

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Error processing request

About

As the Web evolves, so do the frameworks that we use to work with the Web.
Guillotina is part of that evolution, providing an asynchronous web server
with a rich, REST-ful API to build your web applications around.

It is designed for building JavaScript applications. It is an API framework, not
a typical template-based rendering framework like most web frameworks (Django/Pyramid/Plone).
What we mean by this is that Guillotina will not generate HTML out-of-the-box for you.
It is designed to be consumed by JavaScript applications that do the HTML rendering.

	Features:

	
	REST JSON API

	Built-in authentication/authorization, built-in JWT support

	Hierarchical data/url structure

	Permissions/roles/groups

	Fully customizable permission/roles/groups based on hierarchical data structure

	Robust customizable component architecture and configuration syntax

	Content types, dynamic behaviors

	Built-in CORS support

	JSON schema support

	PostgreSQL and CockroachDB drivers

	Blobs

Guillotina is built on the lessons learned from great technologies of the
open source projects Plone, Zope, Pyramid and Django.

	Inspirations:

	
	Plone/Zope’s hierarchical data model

	Pyramid’s decorator-based auto-discovery application configuration syntax

	Django’s global application settings style syntax

	Zope’s component architecture for building robustly customizable applications

	Plone/Zope’s security model

	JSON Schema

	Lessons Learned (from said inspired frameworks):

	
	Trade-offs for the sake of performance is okay

	Too many complex dependencies causes difficulties in management and upgrades

	It’s okay to fork dependency packages

History lesson

In the beginning, there was bobo.

bobo was what Jim Fulton called his initial idea of mapping objects to web
urls. It’s an old idea. A beautiful idea. The developers of Guillotina think
it’s the best possible way to conceptualize most content-centric APIs and
organization of how your web applications think about data or their APIs.

Think about this simple example. Assuming you have the following dictionary:

{
 "foo": {
 "bar": {}
 }
}

	The corresponding urls for a site based off this dictionary would be:

	
	http://localhost:8080/

	http://localhost:8080/foo

	http://localhost:8080/foo/bar

And so on… It’s a simple way to build APIs from data around a hierarchy (or tree).

Extrapolating this concept, Jim Fulton also built the ZODB package. This was a
complete database built on serializing Python objects using the pickle library. Then,
frameworks like Zope (and eventually Plone), used this database and the bobo
style of publishing objects to URLs to build a framework and CMS around.

Forked dependency packages

Guillotina has eaten a few packages that would have otherwise been dependencies.

	The reasons for forking are:

	
	Required to support asyncio

	Provide tighter fit for framework

	Make installations less painful and error-prone

	Groking framework is easier when there is one package to import from

	Forks:

	
	parts of the ZODB data model: we’re on a relational storage model now

	plone.behavior

	zope.security

	zope.schema

	zope.component/zope.configuration

	zope.dublincore

	zope.i18n

	zope.lifecycleevent

	zope.location

	zope.event

What it isn’t

	Guillotina is not a replacement for Plone

	Guillotina is not a re-implementation of Plone

	Guillotina does not implement all the features and APIs of Plone

It could some day with the guillotina_cms package but replacement of Plone is
not the goal of Guillotina.

Quickstart

How to quickly get started using guillotina.

This tutorial will assume usage of virtualenv. You can use your own preferred
tool for managing your python environment.

This tutorial assumes you have postgresql running

Setup the environment:

virtualenv .

Install guillotina:

./bin/pip install guillotina

Generate configuration file (requires cookiecutter):

./bin/pip install cookiecutter
./bin/g create --template=configuration

Finally, run the server:

./bin/g

The server should now be running on http://0.0.0.0:8080

Then, use Postman [https://www.getpostman.com/], curl or whatever tool you
prefer to interact with the REST API.

Modify the configuration in config.yaml to customize server setttings.

Postgresql installation instructions

If you do not have a postgresql database server installed, you can use docker
to get one running quickly.

Example docker run command:

docker run -e POSTGRES_DB=guillotina -e POSTGRES_USER=guillotina -p 127.0.0.1:5432:5432 postgres:9.6

Creating a container

Guillotina containers are the building block of all other content. A container
is where you place all other content for your application. Only containers can
be created inside databases.

Let's create one:

 curl -X POST -H "Accept: application/json" --user root:root -H "Content-Type: application/json" -d '{
 "@type": "Container",
 "title": "Guillotina 1",
 "id": "guillotina",
 "description": "Description"
 }' "http://127.0.0.1:8080/db/"

and create content inside the container:

 curl -X POST -H "Accept: application/json" --user root:root -H "Content-Type: application/json" -d '{
 "@type": "Item",
 "title": "News",
 "id": "news"
 }' "http://127.0.0.1:8080/db/guillotina/"

REST API Reference

Contents:

	Application

	Database

	Container

	Folder

	Item

Application

GET

 Database

Database

GET

 Container

Container

GET

 Folder

Folder

GET

 Item

Item

GET

 Installation/Configuration/Deployment

Installation/Configuration/Deployment

production

Contents:

	Installation
	Running

	Configuration
	Databases

	Static files

	JavaScript Applications

	Root user password

	CORS

	Applications

	Async utilities

	Middleware

	aiohttp settings

	JWT Settings

	Miscellaneous settings

	Transaction strategy

	Connection class

	Production
	Nginx front

	Logging
	Example guillotina configuration

	Request logging example

	Available Loggers

 Installation

Installation

Guillotina is an installable python package [https://pypi.python.org/pypi/guillotina]
which can be installed with pip, easy_install or buildout.

Additionally, Guillotina provides docker images [https://hub.docker.com/r/guillotina/guillotina/].

Running

Installing Guillotina provide the g executable. To run the server, simply:

g serve

Read command options for details of options.

 Configuration

Configuration

guillotina and its addons define a global configuration that is used.
All of these settings are configurable by providing a
JSON configuration file to the start script.

By default, the startup script looks for a config.yaml file. You can use a different
file by using the -c option for the script like this: ./bin/guillotina -c myconfig.yaml.

Databases

Guillotina uses PostgreSQL out-of-the-box.

To configure available databases, use the databases option. Configuration options
map 1-to-1 to database setup:

databases:
 - db:
 storage: postgresql
 dsn:
 scheme: postgres
 dbname: guillotina
 user: postgres
 host: localhost
 password: ''
 port: 5432
 read_only: false

Currently supported database drivers are:

	postgresql

	cockroach

Static files

static:
 favicon.ico: static/favicon.ico
 static_files: module_name:static

These files will then be available on urls /favicon.ico and /static_files.

JavaScript Applications

We can also serve JS apps from guillotina. These will allow routing on your
JS application without any extra configuration by returning the base directory
index.html for every sub directory in the url.

Once there is SSR support in Python, guillotina will integrate with it through
this as well.

jsapps:
 app: path/to/app

Root user password

root_user:
 password: root

CORS

cors:
 allow_origin:
 - "*"
 allow_methods:
 - GET
 - POST
 - DELETE
 - HEAD
 - PATCH
 allow_headers:
 - "*"
 expose_headers:
 - "*"
 allow_credentials: true
 max_age: 3660

Applications

To extend/override Guillotina, the applications configuration allows you to
specify which to enable.

applications:
 - guillotina_elasticsearch

Async utilities

utilities:
 -
 provides: guillotina.interfaces.ICatalogUtility
 factory: guillotina_elasticsearch.utility.ElasticSearchUtility
 settings: {}

Middleware

guillotina is built on aiohttp which provides support for middleware.
You can provide an array of dotted names to use for your application.

middlewares:
 - guillotina_myaddon.Middleware

aiohttp settings

You can pass aiohttp_settings to configure the aiohttp server.

aiohttp_settings:
 client_max_size: 20971520

JWT Settings

If you want to enable JWT authentication, you'll need to configure the JWT
secret in Guillotina.

jwt:
 secret: foobar
 algorithm: HS256

Miscellaneous settings

	port (number): Port to bind to. defaults to 8080

	access_log_format (string): Customize access log format for aiohttp. defaults to None

	store_json (boolean): Serialize object into json field in database. defaults to true

	host (string): Where to host the server. defaults to "0.0.0.0"

	port (number): Port to bind to. defaults to 8080

	conflict_retry_attempts (number): Number of times to retry database conflict errors. defaults to 3

	cloud_storage (string): Dotted path to cloud storage field type. defaults to "guillotina.interfaces.IDBFileField"

Transaction strategy

Guillotina provides a few different modes to operate in to customize the level
of performance versus consistency. The setting used for this is transaction_strategy
which defaults to resolve.

Even though we have different transaction strategies that provide different voting
algorithms to decide if it's a safe write, all write operations STILL make sure that the
object committed matches the transaction it was retrieved with. If not,
a conflict error is detected and the request is retried. So even if you choose
the transaction strategy with no database transactions, there is still a level
of consistency so that you know you will only modify an object that is consistent
with the one retrieved from the database.

Example configuration:

databases:
 - db:
 storage: postgresql
 transaction_strategy: resolve
 dsn:
 scheme: postgres
 dbname: guillotina
 user: postgres
 host: localhost
 password: ''
 port: 5432

Available options:

	none:
No db transaction, no conflict resolution. Fastest but most dangerous mode.
Use for importing data or if you need high performance and do not have multiple writers.

	tidonly:
The same as none with no database transaction; however, we still use the database
to issue us transaction ids for the data committed. Since no transaction is used,
this is potentially just as safe as any of the other strategies just as long
as you are not writing to multiple objects at the same time — in those cases,
you might be in an inconsistent state on tid conflicts.

	dbresolve:
Use db transaction but do not perform any voting when writing(no conflict resolution).

	dbresolve_readcommitted:
Same as no vote; however, db transaction only started at commit phase. This
should provide better performance; however, you'll need to consider the side
affects of this for reading data.

	simple:
Detect concurrent transactions and error if another transaction id is committed
to the db ahead of the current transaction id. This is the safest mode to operate
in but you might see conflict errors.

	resolve:
Same as simple; however, it allows commits when conflicting transactions
are writing to different objects.

	resolve_readcommitted:
Same as resolve however, db transaction only started at commit phase. This
should provide better performance; however, you'll need to consider that side
affects of this for reading data.

Warning: not all storages are compatible with all transaction strategies.

Connection class

The default asyncpg connection class has some overhead. Guillotina provides
a way to override it with a custom class or a provided lighter one:

pg_connection_class: guillotina.db.storages.pg.LightweightConnection

 Production

Production

Nginx front

It's very common to run the API using nginx with a proxy_pass in front,
so there is an option to define the URL for the generated URLs inside the api:

Adding the header:

X-VirtualHost-Monster https://example.com/api/

will do a rewrite of the URLs.

Sample configuration on nginx:

 location /api/ {
 proxy_set_header X-VirtualHost-Monster $scheme://$http_host/api/
 proxy_pass http://api.guillotina.svc.cluster.local:80/;
 }

 Logging

Logging

Logging configuration is built into guillotina's configuration syntax.

If the logging setting is provided, it is simply passed to Python's dict config
method: https://docs.python.org/3.6/library/logging.config.html#logging-config-dictschema

Example guillotina configuration

To log errors for guillotina for example:

{
 "logging": {
 "version": 1,
 "formatters": {
 "brief": {
 "format": "%(message)s"
 },
 "default": {
 "format": "%(asctime)s %(levelname)-8s %(name)-15s %(message)s",
 "datefmt": "%Y-%m-%d %H:%M:%S"
 }
 },
 "handlers": {
 "file": {
 "class": "logging.handlers.RotatingFileHandler",
 "formatter": "default",
 "filename": "logconfig.log",
 "maxBytes": 1024,
 "backupCount": 3
 }
 },
 "loggers": {
 "guillotina": {
 "level": "DEBUG",
 "handlers": ["file"],
 "propagate": 0
 }
 }
 }
}

Request logging example

{
 "logging": {
 "version": 1,
 "formatters": {
 "default": {
 "format": "%(message)s"
 }
 },
 "handlers": {
 "file": {
 "class": "logging.handlers.RotatingFileHandler",
 "formatter": "default",
 "filename": "access.log",
 "maxBytes": 1024,
 "backupCount": 3
 }
 },
 "loggers": {
 "aiohttp.access": {
 "level": "INFO",
 "handlers": ["file"],
 "propagate": 0
 }
 }
 }
}

Available Loggers

	guillotina

	aiohttp.access

	aiohttp.client

	aiohttp.internal

	aiohttp.server

	aiohttp.web

	aiohttp.websocket

 Awesome Guillotina

Awesome Guillotina

Some useful applications to get you started:

	guillotina_swagger [https://github.com/guillotinaweb/guillotina_swagger]: Automatic swagger generation

	guillotina_elasticsearch [https://github.com/guillotinaweb/guillotina_elasticsearch]: Elasticsearch integration

	guillotina_dbusers [https://github.com/guillotinaweb/guillotina_dbusers]: Users/Groups stored as content

	guillotina_mailer [https://github.com/guillotinaweb/guillotina_mailer]: Mailer utilities

	guillotina_rediscache [https://github.com/onna/guillotina_rediscache]: Cache database with redis

	guillotina_s3storage [https://github.com/onna/guillotina_s3storage]: S3 file storage

	guillotina_gcloudstorage [https://github.com/onna/guillotina_gcloudstorage]: GCloud file storage

	guillotina_statsd [https://github.com/onna/guillotina_statsd]: statsd metrics

	guillotina_prometheus [https://github.com/onna/guillotina_prometheus]: prometheus stats

Where to find more packages:

	Guillotina Web [https://github.com/guillotinaweb]

	Onna [https://github.com/onna]

 Developer documentation

Developer documentation

Contents:

	Narrative

	Security

	Roles

	Applications

	Add-ons

	Services

	Content types

	Behaviors

	Interfaces

	Commands

	Application Configuration

	Overriding Configuration

	Design

	Persistence

	Blobs

	Router

	Exceptions

	Fields

	API Reference

 Narrative

Narrative

In these narrative docs, we'll go through creating a todo application.

Installation

pip install guillotina

Generating the initial application

Guillotina comes with a cookiecutter template for creating a base application.

First, install cookiecutter if it isn't already installed.

pip install cookiecutter

Then, run the generate command:

guillotina create --template=application

Enter guillotina_todo for package_name.

Then, install your package:

cd guillotina_todo
python setup.py develop

Configuring

The scaffold produces an initial config.yaml configuration file for you.

You can inspect and customize your configuration. Most notable is the database
configuration. If you want to run a development postgresql server, the
scaffold ships with a Makefile that provides a command to run a postgresql
docker: make run-postgres.

Creating to do type

Types consist of an interface (schema) using the excellent zope.interface package
and a class that uses that interface.

Create a content.py file with the following:

from guillotina import configure
from guillotina import schema
from guillotina import interfaces
from guillotina import content

class IToDo(interfaces.IItem):
 text = schema.Text()

@configure.contenttype(
 type_name="ToDo",
 schema=IToDo)
class ToDo(content.Item):
 """
 Our ToDo type
 """

Then, we want to make sure our content type configuration is getting loaded,
so add this to your __init__.py includeme function:

 configure.scan('guillotina_todo.content')

Running

You run you application by using the guillotina command runner again:

guillotina serve -c config.yaml

Creating your todo list

Create container first:

curl -X POST --user root:root \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 -d '{
 "@type": "Container",
 "title": "ToDo List",
 "id": "todo",
 "description": "My todo list"
 }' "http://127.0.0.1:8080/db/"

Install your todo list application:

curl -X POST \
 --user root:root \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 -d '{
 "id": "guillotina_todo"
 }' "http://127.0.0.1:8080/db/todo/@addons"

Add todo items:

curl -X POST \
 --user root:root \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 -d '{
 "@type": "ToDo",
 "text": "Get milk"
 }' "http://127.0.0.1:8080/db/todo"

curl -X POST \
 --user root:root \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 -d '{
 "@type": "ToDo",
 "text": "Do laundry"
 }' "http://127.0.0.1:8080/db/todo"

Get a list of todo items:

curl -H "Accept: application/json" --user root:root "http://127.0.0.1:8080/db/todo"

 Security

Security

Security for every operation is managed against three definitions (in order of priority):

	Local

	Global

	Code

Locally can be defined:

	A user/group has a permission in this object but not children

	A user/group has a permission in this object and its children

	A user/group is forbidden permission in this object and its children

	A user/group has a role on this object but not its children

	A user/group has a role on this object and its children

	A user/group is forbidden a role on this object and its children

	A role has a permission on this object and its children

	A role has a permission on this object and its children

	A role is forbidden permission in this object and its children

Globally:

	A user/group has this Role

	A user/group has this Permission

Code:

	A user/group has this Role

	A user/group has this Permission

	A Role has this Permission

Roles

There are two kind of roles: Global and Local. The ones that are defined to be local
can't be used globally and vice-versa. On indexing, the global roles are the ones
that are indexed for security in addition to the flat user/group information from each resource.

Python helper functions

Code to get the global roles that have access_content to an object
from guillotina.security.utils import get_roles_with_access_content
get_roles_with_access_content(obj)

Code to get the user list that have access content to an object
from guillotina.security.utils import get_principals_with_access_content
get_principals_with_access_content(obj)

Code to get all the security info
from guillotina.security.utils import settings_for_object
settings_for_object(obj)

Code to get the Interaction object (security object)
from guillotina.interfaces import IInteraction

interaction = IInteraction(request)

Get the list of global roles for a user and some groups
interaction.global_principal_roles(principal, groups)

Get if the authenticated user has permission on a object
interaction.check_permission(permission, obj)

REST APIs

Get all the endpoints and their security

[GET] APPLICATION_URL/@apidefinition (you need guillotina.GetContainers permission)

Get the security info for a resource (with inherited info)

[GET] RESOURCE/@sharing (you need guillotina.SeePermissions permission)

Modify the local roles/permission for a resource

[POST] RESOURCE/@sharing (you need guillotina.ChangePermissions permission)

{
"prinperm": [
 {
 "principal": "foobar",
 "permission": "guillotina.ModifyContent",
 "setting": "Allow"
 }
],
"prinrole": [
 {
 "principal": "foobar",
 "role": "guillotina.Owner",
 "setting": "Allow"
 }
],
"roleperm": [
 {
 "permission": "guillotina.ModifyContent",
 "role": "guillotina.Member",
 "setting": "Allow"
 }
]
}

The different types are:

	Allow: you set it on the resource and the children will inherit

	Deny: you set it on the resource and the children will inherit

	AllowSingle: you set it on the resource and the children will not inherit

	Unset: you remove the setting

 Roles

Roles

guillotina implements robust ACL security.

An overview of our security features are:

	Users are given roles and groups

	Roles are granted permissions

	Groups are granted roles

	Roles can be granted to users on specific objects

Requests security

By default request has participation of anonymous user plus the ones added by auth plugins

Databases, Application and static files objects

Databases and static files have a specific permission system. They don't have roles by default
and the permissions are specified to root user

	guillotina.AddContainer

	guillotina.GetContainers

	guillotina.DeleteContainers

	guillotina.AccessContent

	guillotina.GetDatabases

Anonymous user has on DB/StaticFiles/StaticDirectories/Application object :

	guillotina.AccessContent

Roles in guillotina container objects

Defined at:

	guillotina/permissions.py

Content Related

guillotina.Anonymous

	guillotina.AccessPreflight

guillotina.Member

	guillotina.AccessContent

guillotina.Reader

	guillotina.AccessContent

	guillotina.ViewContent

guillotina.Editor

	guillotina.AccessContent

	guillotina.ViewContent

	guillotina.ModifyContent

	guillotina.ReindexContent

guillotina.Reviewer

guillotina.Owner

	guillotina.AccessContent

	guillotina.ViewContent

	guillotina.ModifyContent

	guillotina.DeleteContent

	guillotina.AddContent

	guillotina.ChangePermissions

	guillotina.SeePermissions

	guillotina.ReindexContent

Container/App Roles

guillotina.ContainerAdmin

	guillotina.AccessContent

	guillotina.ManageAddons

	guillotina.RegisterConfigurations

	guillotina.WriteConfiguration

	guillotina.ReadConfiguration

	guillotina.ManageCatalog

guillotina.ContainerDeleter

	guillotina.DeletePortal

Default roles on Guillotina Container

They are stored in annotations using IRolePermissionMap.

Created objects set the guillotina.Owner role to the user who created it.

Default groups on Guillotina Container

Managers

RootParticipation

There is a root user who has permissions to all containers:

DB/APP permissions are defined on factory/content.py

 Applications

Applications

Applications are used to provide additional functionality to guillotina.

Community Addons

Some useful addons to use in your own development:

	guillotina_elasticsearch [https://github.com/guillotinaweb/guillotina_elasticsearch/]: Index content in elastic search

	guillotina_pgcatalog [https://github.com/guillotinaweb/guillotina_pgcatalog]: Index content in postgresql

	guillotina_dbusers [https://github.com/guillotinaweb/guillotina_dbusers]: Store and authenticate users in the database

	guillotina_swagger [https://github.com/guillotinaweb/guillotina_swagger]: Automatic swagger support

	guillotina_mailer [https://github.com/guillotinaweb/guillotina_mailer]: async send mail

Creating

An application is a Python package that implements an entry point to tell guillotina
to load it.

If you're not familiar with how to build Python applications, please
read documentation on building packages [https://python-packaging.readthedocs.io/en/latest/]
before you continue.

In this example, guillotina_myaddon is your package module.

Initialization

Your config.yaml file will need to provide the application name in the
applications array for it to be initialized.

applications:
 - guillotina_myaddon

Configuration

Once you create a guillotina application, there are two primary ways for it
to hook into guillotina.

Call the includeme function

Your application can provide an includeme function at the root of the module
and guillotina will call it with the instance of the root object.

def includeme(root):
 # do initialization here...
 pass

Load app_settings

If an app_settings dict is provided at the module root, it will automatically
merge the global guillotina app_settings with the module's. This allows you
to provide custom configuration.

 Add-ons

Add-ons

Addons are integrations that can be installed or uninstalled against a Guillotina container.
guillotina applications can potentially provide many addons. If you have
not read the section on applications, please read that before you come here. The
only way to provide addons is to first implement a guillotina application.

Creating an add-on

Create an addon installer class in an install.py file in your guillotina application:

from guillotina.addons import Addon
from guillotina import configure

@configure.addon(
 name="myaddon",
 title="My addon")
class MyAddon(Addon):

 @classmethod
 def install(cls, container, request):
 # install code
 pass

 @classmethod
 def uninstall(cls, container, request):
 # uninstall code
 pass

Note

Scanning

If your service modules are not imported at run-time, you may need to provide an
additional scan call to get your services noticed by guillotina.

In your application __init__.py file, you can simply provide a scan call like:

from guillotina import configure
def includeme(root):
 configure.scan('my.package')

Layers

Your addon can also install layers for your application to lookup views and adapters
from:

from guillotina.addons import Addon
from guillotina import configure
from guillotina.interfaces import ILayers

LAYER = 'guillotina_myaddon.interfaces.ILayer'

@configure.addon(
 name="myaddon",
 title="My addon")
class MyAddon(Addon):

 @classmethod
 def install(cls, container, request):
 registry = request.container_settings
 registry.for_interface(ILayers).active_layers |= {
 LAYER
 }

 @classmethod
 def uninstall(cls, container, request):
 registry = request.container_settings
 registry.for_interface(ILayers).active_layers -= {
 LAYER
 }

 Services

Services

Services provide responses to API endpoint requests. A service is the same as
a "view" that you might see in many web frameworks.

The reason we're using the convention "service" is because we're focusing on
creating API endpoints.

Defining a service

A service can be as simple as a function in your application:

from guillotina import configure
from guillotina.interfaces import IContainer

@configure.service(context=IContainer, name='@myservice', method='GET',
 permission='guillotina.AccessContent')
async def my_service(context, request):
 return {
 'foo': 'bar'
 }

The most simple way to define a service is to use the decorator method shown here.

As long as your application imports the module where your service is defined,
your service will be loaded for you.

In this example, the service will apply to a GET request against a container,
/zodb/guillotina/@myservice.

Note

Scanning

If your service modules are not imported at run-time, you may need to provide an
additional scan call to get your services noticed by guillotina.

In your application __init__.py file, you can simply provide a scan call like:

from guillotina import configure
def includeme(root):
 configure.scan('my.package')

Class-based services

For more complex services, you might want to use class-based services.

With the class-based approach, the example above will look like this:

from guillotina import configure
from guillotina.interfaces import IContainer
from guillotina.api.service import Service

@configure.service(context=IContainer, name='@myservice', method='GET',
 permission='guillotina.AccessContent')
class MyService(Service):
 async def __call__(self):
 return {
 'foo': 'bar'
 }

Special cases

I want that my service is accessible no matter the content

You can define in the service configuration with allow_acces=True

@service(
 context=IResource, name='@download',
 method='GET', permission='guillotina.Public',
 allow_access=True)
async def my_service(context, request):
 pass

 Content types

Content types

Content types allow you to provide custom schemas and content to your services.

Out-of-the-box, guillotina ships with simple Container, Folder and Item content types.
The Container content type is the main content type to hold your data in. It is
the starting point for applications and other things to operate within.

The Folder type allows someone to add items inside of it. Both types only have
simple Dublin Core fields by default.

Defining content types

A content type consists of a class and optionally, a schema to define the custom
fields you want your class to use.

A simple type will look like this::

from guillotina import configure
from guillotina.content import Folder
from guillotina.interfaces import IItem
from guillotina import schema

class IMySchema(IItem):
 foo = schema.Text()

@configure.contenttype(
 type_name="MyType",
 schema=IMySchema,
 behaviors=["guillotina.behaviors.dublincore.IDublinCore"])
class MyType(Folder):
 pass

This example creates a simple schema and assigns it to the MyType content
type.

Note

Scanning

If your service modules are not imported at run-time, you may need to provide an
additional scan call to get your services noticed by guillotina.

In your application __init__.py file, you can simply provide a scan call like:

from guillotina import configure
def includeme(root):
 configure.scan('my.package')

 Behaviors

Behaviors

Besides having static content types definitions with their schema, there is the concept of behaviors.
This allows us to provide functionality across content types, using specific marker interfaces to create adapters and subscribers based on that behavior and not the content type.

Definition of a behavior

If you want to have a shared behavior based on some fields and operations that needs to be shared across different content types, you can define them on a guillotina.schema interface:

 from zope.interface import Interface
 from zope.interface import provider
 from guillotina.schema import Textline

 class IMyLovedBehavior(Interface):
 text = Textline(
 title=u'Text line field',
 required=False
)

 text2 = Textline(
 title=u'Text line field',
 required=False
)

Once you define the schema you can define a specific marker interface that will be applied to the objects that has this behavior:

 class IMarkerBehavior(Interface):
 """Marker interface for content with attachment."""

Finally the instance class that implements the schema can be defined in case you want to enable specific operations.
Or you can use guillotina.behaviors.instance.AnnotationBehavior as the default annotation storage.

For example, in case you want to have a class that stores the field as content and not as annotations:

from guillotina.behaviors.properties import ContextProperty
from guillotina.behaviors.instance import AnnotationBehavior
from guillotina.interfaces import IResource
from guillotina import configure

@configure.behavior(
 title="Attachment",
 provides=IMyLovedBehavior,
 marker=IMarkerBehavior,
 for_=IResource)
class MyBehavior(AnnotationBehavior):
 """If attributes
 """
 text = ContextProperty(u'attribute', ())

In this example text will be stored on the context object and text2 as a annotation.

Static behaviors

With behaviors you can define them as static for specific content types:

from guillotina import configure
from guillotina.interfaces import IItem
from guillotina.content import Item

@configure.contenttype(
 type_name="MyItem",
 schema=IItem,
 behaviors=["guillotina.behaviors.dublincore.IDublinCore"])
class MyItem(Item):
 pass

Note

Scanning

If your service modules are not imported at run-time, you may need to provide an
additional scan call to get your services noticed by guillotina.

In your application __init__.py file, you can simply provide a scan call like:

from guillotina import configure
def includeme(root):
 configure.scan('my.package')

Create and modify content with behaviors

For the deserialization of the content you will need to pass on the POST/PATCH operation the behavior as a object on the JSON.

CREATE an ITEM with the expires : POST on parent:

 {
 "@type": "Item",
 "guillotina.behaviors.dublincore.IDublinCore": {
 "expires": "1/10/2017"
 }
 }

MODIFY an ITEM with the expires : PATCH on the object:

 {
 "guillotina.behaviors.dublincore.IDublinCore": {
 "expires": "1/10/2017"
 }
 }

Get content with behaviors

On the serialization of the content you will get the behaviors as objects on the content.

GET an ITEM : GET on the object:

 {
 "@id": "http://localhost:8080/zodb/guillotina/item1",
 "guillotina.behaviors.dublincore.IDublinCore": {
 "expires": "2017-10-01T00:00:00.000000+00:00",
 "modified": "2016-12-02T14:14:49.859953+00:00",
 }
 }

Dynamic Behaviors

guillotina offers the option to have content that has dynamic behaviors applied to them.

Which behaviors are available on a context

We can know which behaviors can be applied to a specific content.

GET CONTENT_URI/@behaviors:

 {
 "available": ["guillotina.behaviors.attachment.IAttachment"],
 "static": ["guillotina.behaviors.dublincore.IDublinCore"],
 "dynamic": [],
 "guillotina.behaviors.attachment.IAttachment": { },
 "guillotina.behaviors.dublincore.IDublinCore": { }
 }

This list of behaviors is based on the for statement on the configure of the behavior.
The list of static ones are the ones defined on the content type definition on the configure.
The list of dynamic ones are the ones that have been assigned.

Add a new behavior to a content

We can add a new dynamic behavior to a content using a PATCH operation on the object with the @behavior attribute,
or in a small PATCH operation to the @behavior entry point with the value to add.

MODIFY an ITEM with the expires : PATCH on the object:

 {
 "guillotina.behaviors.dublincore.IDublinCore": {
 "expires": "1/10/2017"
 }
 }

MODIFY behaviors : PATCH on the object/@behaviors:

 {
 "behavior": "guillotina.behaviors.dublincore.IDublinCore"
 }

Delete a behavior to a content

We can add a new dynamic behavior to a content by a DELETE operation to the @behavior entry point with the value to remove.

DELETE behaviors : DELETE on the object/@behaviors:

 {
 "behavior": "guillotina.behaviors.dublincore.IDublinCore"
 }

Out-of-the-box Behaviors

Guillotina comes with a couple behaviors:

	guillotina.behaviors.dublincore.IDublinCore: Dublin core field

	guillotina.behaviors.attachment.IAttachment: Provide file field

 Interfaces

Interfaces

guillotina uses interfaces to abstract and define various things including
content. Interfaces are useful when defining API contracts, using inheritance,
defining schema/behaviors and being able to define which content your services
are used for.

In the services example, you'll notice the use of context=IContainer for the service
decorator configuration. In that case, it is used to tell guillotina that the
service is only defined for a container object.

Common interfaces

Interfaces you will be interested in defining services for are:

	guillotina.interface.IDatabase: A database contains the container objects

	guillotina.interface.IContainer: Container content object

	guillotina.interface.IResource: Base interface for all content

	guillotina.interface.IContainer: Base interface for content that can contain other content

	guillotina.interface.IRegistry: Registry object interface

	guillotina.interface.IDefaultLayer: Layers are an interface applied to the
request object. IDefaultLayer is the base default layer applied to the request object.

 Commands

Commands

You can provide your own CLI commands for guillotina through a simple interface.

Available commands

	serve: run the HTTP REST API server (this is the default command if none given)

	shell: drop into a shell with root object to manually work with

	create: use cookiecutter to generate guillotina applications

	initialize-db: databases are automatically initialized; however, you can use this command to manually do it

	testdata: populate the database with test data from wikipedia

	run: run a python script. The file must have a function async def run(container):

Command Options

	
	

	--config: path to configuration file. defaults to config.(yaml|json)

	--profile: profile Guillotina while it's running

	--profile-output: where to save profiling output

	--monitor: run with aiomonitor requires aiomonitor

	--line-profiler: use line_profiler requires line_profiler

	--line-profiler-matcher: fnmatch of module/function to profile requires line_profiler

	--line-profiler-output: to store output in a file requires line_profiler

	serve:

	--host: host to bind to

	--port: port to bind to

	--reload: auto reload on code changes. requires aiohttp_autoreload

	shell

	create

	--template: name of template to use

	--overwrite: overwrite existing file

	--output: where to save the file

	initialize-db

	testdata

	--per-node: How many items to import per node

	--depth: How deep to make the nodes

	run

	--script: path to script to run with run async function

Running commands

Guillotina provides two binaries to run commands through, bin/guillotina and
a shortcut, bin/g.

To run a command, it's just a positional argument on the running command::

bin/g shell

Creating commands

guillotina provides a simple API to write your own CLI commands.

Here is a minimalistic example:

from guillotina.commands import Command
class MyCommand(Command):

 def get_parser(self):
 parser = super(MyCommand, self).get_parser()
 # add command arguments here...
 return parser

 def run(self, arguments, settings, app):
 pass

Then, just add your command to your application's app_settings in the __init__.py:

app_settings = {
 "commands": {
 "mycommand": "my.package.commands.MyCommand"
 }
}

 Application Configuration

Application Configuration

guillotina handles configuration application customizations and extension
mostly with decorators in code.

This page is meant to be a reference to the available decorators and options
to those decorators.

service

@configure.service

	context: Content type interface this service is registered against. Example: IContainer: required

	method: HTTP method this service works against. Default is GET

	permission: Permission this service requires. Default is configure default_permission setting

	layer: Layer this service is registered for. Default is IDefaultLayer

	name: This is used as part of the uri. Example @foobar -> /mycontent/@foobar. Leave empty to be used for base uri of content -> /mycontent.

content type

@configure.contenttype

	type_name: Name of the content type: required

	schema: Interface schema to use for type: required

	add_permission: Permission required to add content. Defaults to guillotina.AddContent

	allowed_types: List of types allowed to be added inside this content assuming it is a Folder type. Defaults to allowing all types.

behavior

@configure.behavior

	title: Name of behavior

	provides: Interface this behavior provides

	marker: Marker interface to apply to utilized instance's behavior

	for_: Content type this behavior is available for

addon

@configure.addon

	name: required

	title: required

adapter

@configure.adapter

	for_: Type or list of types this adapter adapts: required

	provides: Interface this adapter provides: required

	name: Your adapter can be named to be looked up by name

	factory: To use without decorator syntax, this allows you to register adapter of class defined elsewhere

subscriber

@configure.subscriber

	for_: Type or list of types this subscriber is for: required

	handler: A callable object that handles event, this allows you to register subscriber handler defined elsewhere

	factory: A factory used to create the subscriber instance

	provides: Interface this adapter provides--must be used along with factory

utility

@configure.utility

	provides: Interface this utility provides

	name: Name of utility

	factory: A factory used to create the subscriber instance

permission

configure.permission

	id

	title

	description

role

configure.role

	id

	title

	description

grant

configure.grant

	role: ID of role

	principal: ID of principal to grant to

	permission: ID of permission to grant

	permissions: List of permission IDs to grant to

grant_all

configure.grant_all

	principal: ID of principal

	role: ID of role

Overriding Configuration

guillotina applications can override default guillotina configuration.

If multiple guillotina applications configure conflicting configurations,
guillotina chooses the configuration according to the order the guillotina
applications that are included.

 Design

Design

This section is meant to explain and defend the design of guillotina.

JavaScript application development focus

One of the main driving factors behind the development of guillotina is to
streamline the development of custom web applications.

Some of the technologies we support in order to be a great web application development
platform are:

	Everything is an API endpoint

	JWT

	Web sockets

	Configuration is done with JSON

	URL to object-tree data model

Speed

A primary focus of guillotina is speed. We take shortcuts and may use some
ugly or less-well conceptually architected solutions in some areas in order
to gain speed improvements.

Some of the decisions we made affect how applications and addons are designed.
Mainly, we try to stay light on the amount of data we're loading from the
database where possible and we try to lower the number of lookups we do in
certain scenarios.

That being said, guillotina is not a barebones framework. It provides a lot
of functionality so it will never be as fast as say Pyramid.

"There are no solutions. There are only trade-offs." - Thomas Sowell

Asynchronous

guillotina is asynchronous from the ground up, built on top of aiohttp
using Python 3.6's asyncio features.

Practically speaking, being built completely on asyncio compatible technologies,
guillotina does not block for network IO to the database, index catalog,
redis, etc or whatever you've integrated.

Additionally, we have support for async utilities that run in the same async
loop and async content events.

Finally, we also support web sockets OOTB.

Security

Guillotina uses the same great security infrastructure that Plone
has been using for the last 15 years which allows you to define permissions, roles,
groups, users and customize all of them contextually based on where the content
is located in your container.

Style

Stylistically, guillotina pulls ideas from the best web frameworks:

	YAML/JSON configuration

	Pyramid-like idioms and syntax where it makes sense

	Functions + decorators over classes

 Persistence

Persistence

There are three kinds of objects that are considered on the system:

	Tree objects: objects are resources that implement guillotina.interfaces.IResource.
This object has a __name__ and a __parent__ property that indicate the id
on the tree and the link to the parent. By themselves they don't have access totheir children, they need to interact with the transaction object to get them.

	Nested: objects that are linked at some attribute inside the Tree object, this object
are serialized with the main object and may lead to conflicts if there are lots
of this kind of objects. It can belong to a field that is an object

	Annotations: objects that are associated with tree objects. These can be
any type of data. In Guillotina, the main source of annotation objects are
behaviors.

Saving objects

If you're manually modifying objects in services(or views) without using
the serialization adapters, you need to register the object to be saved
to the database. To do this, just use the _p_register() method.

@configure.service(
 method='PATCH', name='@dosomething')
async def matching_service(context, request):
 context.foobar = 'foobar'
 context._p_register()

Transactions

Guillotina automatically manages transactions for you in services; however,
if you have long running services and need to flush data to the database,
you can manually manage transactions as well.

from guillotina.transactions import get_tm

tm = get_tm()
await tm.commit() # commit current transaction
await tm.begin() # start new one

There is also an async context manager:

from guillotina.transactions import managed_transaction

async with managed_transaction() as txn:
 # modify objects

 Blobs

Blobs

guillotina provides basic blob file persistency support. These blobs are still
stored in the database.

Registering a blobs

Blobs must be registered with and stored on a resource object. This is so we
can do garbage collection on the blobs that were created for resources.

from guillotina.blob import Blob

blob = Blob(resource)
resource.blob = blob
blobfi = blob.open('w')

await blobfi.async_write(b'foobar')
assert await blobfi.async_read() == b'foobar'

Guillotina automatically reads and writes chunks of blob data from the database.

 Router

Router

Guillotina uses aiohttp for it's webserver. In order to route requests against
Guillotina's traversal url structure, Guillotina provides it's own router
that does traversal: guillotina.traversal.router.

How URLs are routed

Guillotina's content is structured like a file system. Objects are routed to
URL paths. HTTP verbs are provided against those objects on those paths.
Additional services(or views depending on terminology) are provided with
URL path parts that start with @, for example, the @move endpoint.

Route matching

With Guillotina, you can also route custom sub paths off a registered service.
Guillotina is primarily for routing objects to urls; however, this feature is
used to provide additional parameters to the service.

An example of where this is used is for file services: /db/container/item/@upload/file.

Registering custom route parts

@configure.service(
 method='GET', permission='guillotina.AccessContent',
 name='@match/{foo}/{bar}')
async def matching_service(context, request):
 return request.matchdict # will return {'foo': 'foo', 'bar': 'bar'}

Providing your own router

Guillotina allows you to provide your own customized router using the router
settings.

Here is an example router that provides /v1 and /v2 type url structure:

from guillotina import configure
from guillotina.content import Resource
from guillotina.interfaces import IContainer
from guillotina.interfaces import IDefaultLayer
from guillotina.interfaces import IRequest
from guillotina.interfaces import IResource
from guillotina.traversal import TraversalRouter
from guillotina.traversal import traverse
from zope.interface import alsoProvides

class IV1Layer(IDefaultLayer):
 pass

class IV2Layer(IDefaultLayer):
 pass

@configure.service(method='GET', name='@foobar',
 permission='guillotina.AccessContent',
 layer=IV1Layer)
async def v1_service(context, request):
 return {
 'version': '1'
 }

@configure.service(method='GET', name='@foobar',
 permission='guillotina.AccessContent',
 layer=IV2Layer)
async def v2_service(context, request):
 return {
 'version': '2'
 }

@configure.contenttype(type_name="VersionRouteSegment")
class VersionRouteSegment(Resource):

 type_name = 'VersionRouteSegment'

 def __init__(self, name, parent):
 super().__init__()
 self.__name__ = self.id = name
 self.__parent__ = parent

class MyRouter(TraversalRouter):
 async def traverse(self, request: IRequest) -> IResource:
 resource, tail = await super().traverse(request)
 if len(tail) > 0 and tail[0] in ('v1', 'v2') and IContainer.providedBy(resource):
 segment = VersionRouteSegment(tail[0], resource)
 if tail[0] == 'v1':
 alsoProvides(request, IV1Layer)
 elif tail[0] == 'v2':
 alsoProvides(request, IV2Layer)

 if len(tail) > 1:
 # finish traversal from here
 return await traverse(request, segment, tail[1:])
 else:
 resource = segment
 tail = tail[1:]
 return resource, tail

app_settings = {
 # provide custom application settings here...
 'router': MyRouter
}

 Exceptions

Exceptions

Exceptions during the rendering of API calls are wrapped, logged and provided
generic http status codes by default.

Guillotina provides a mechanism for customizing the status codes and type of
responses given depending on the exception type.

Custom exception response

from aiohttp.web_exceptions import HTTPPreconditionFailed
from guillotina import configure
from guillotina.interfaces import IErrorResponseException

import json

@configure.adapter(
 for_=json.decoder.JSONDecodeError,
 provides=IErrorResponseException)
def json_decode_error_response(exc, error='', eid=None):
 return HTTPPreconditionFailed(
 reason=f'JSONDecodeError: {eid}')

 Fields

Fields

Guillotina uses schemas to define content types and behaviors. These schemas
consist of field definitions.

Available fields

	guillotina.schema.Bool

	guillotina.schema.Bytes

	guillotina.schema.Choice: validates against vocabulary of values

	guillotina.schema.Date

	guillotina.schema.Datetime

	guillotina.schema.Decimal

	guillotina.schema.Dict

	guillotina.schema.Float

	guillotina.schema.Int

	guillotina.schema.JSONField

	guillotina.schema.List

	guillotina.schema.Set

	guillotina.schema.Text

	guillotina.schema.TextLine

	guillotina.schema.Time

	guillotina.fields.PatchField: allow updating value without patching entire value

	guillotina.fields.BucketListField: optimized storage for very large lists of data

	guillotina.files.CloudFileField: file field for storing in db or cloud storage

Patch field

Guillotina provides a PatchField which allows you to patch values of List and
Dict fields without having the original value.

Patch list field

from zope.interface import Interface
from guillotina.fields import PatchField
from guillotina import schema

class IMySchema(Interface):
 values = PatchField(schema.List(
 value_type=schema.Text()
))

Then, payload for patching to append to this list would look like:

{
 "values": {
 "op": "append",
 "value": "foobar"
 }
}

Extend:

{
 "values": {
 "op": "extend",
 "value": ["foo", "bar"]
 }
}

Delete:

{
 "values": {
 "op": "del",
 "value": 0
 }
}

Update:

{
 "values": {
 "op": "update",
 "value": {
 "index": 0,
 "value": "Something new"
 }
 }
}

Patch dict field

from zope.interface import Interface
from guillotina.fields import PatchField
from guillotina import schema

class IMySchema(Interface):
 values = PatchField(schema.Dict(
 key_type=schema.Text()
 value_type=schema.Text()
))

Then, payload for patching to add to this dict would look like:

{
 "values": {
 "op": "assign",
 "value": {
 "key": "foo",
 "value": "bar"
 }
 }
}

Delete:

{
 "values": {
 "op": "del",
 "value": "foo"
 }
}

Bucket list field

from zope.interface import Interface
from guillotina.fields import PatchField
from guillotina import schema

class IMySchema(Interface):
 values = BucketListField(
 value_type=schema.Text(),
 bucket_len=5000
)

Then, payload for patching to append to this list would look like:

{
 "values": {
 "op": "append",
 "value": "foobar"
 }
}

Extend:

{
 "values": {
 "op": "extend",
 "value": ["foo", "bar"]
 }
}

Delete:

{
 "values": {
 "op": "del",
 "value": {
 "bucket_index": 0,
 "item_index": 0
 }
 }
}

 API Reference

API Reference

Contents:

	guillotina.content

	guillotina.utils

 guillotina.content

guillotina.content

 guillotina.utils

guillotina.utils

 Training

Training

	Prerequisites:

	
	Python >= 3.6

	Docker

	Postman

Contents:

	Introduction
	Using the training materials

	Installing Guillotina
	with pip

	Starting Guillotina
	Command

	Check installation

	Useful run options

	Configuration
	Getting started

	Modifying configuration

	Configuration file

	Installing applications

	Using the Guillotina API
	Interacting with the API

	Creating content

	Adding behaviors

	Uploading files

	Uploading files with TUS

	Modifying permissions

	Exploring the API with Swagger

	AsyncIO
	Explanation

	Basics

	Basics(2)

	Long running tasks

	ALL YOUR ASYNC BELONGS TO US

	"multi" processing

	asyncio loops

	Scheduling

	Executors

	Subprocess

	Extending
	Configuration

	Content types

	Install an addons

	Permissions/Role

	Event subscribers

	Users

	Serialize content

	Defining a custom serialization

	Services

	Async Utilities

	Websockets

	Static files

	Commands
	Shell

	Run

	Kitchen Sink

 Introduction

Introduction

The Guillotina training is designed to give a complete experience of using and
extending Guillotina.

The training can be useful for consumers of the Guillotina API as well as developers
extending the framework with customizations/addons.

Please read the about chapter for details about what
Guillotina is and why you should use it.

Using the training materials

The training materials make use of Python 3.6, Docker and Postman so please
have up-to-date versions of all these ready.

References

	About Guillotina

 Installing Guillotina

Installing Guillotina

Guillotina is a simple Python package so it can be installed with any of the
number of installation methods available to Python.

In the traing here, we will focus on using pip [https://pip.pypa.io/en/stable/]
and docker. You can use, for example, buildout as well.

with pip

Note

It is recommended you install along with a virtualenv:

virtualenv-3.6 genv
cd genv
source ./bin/activate

It's as simple as...

pip install guillotina

For the purpose of this training, you'll also need to install cookiecutter.

pip install cookiecutter

Guillotina also provides docker images [https://hub.docker.com/r/guillotina/guillotina/].

References

	Quickstart

	Installation

	About Guillotina

 Starting Guillotina

Starting Guillotina

Once you have guillotina installed, you can easily run it
with the g executable that it installs.

However, before we begin, we'll need to run a postgresql server for Guillotina
to use.

docker run -e POSTGRES_DB=guillotina -e POSTGRES_USER=guillotina -p 127.0.0.1:5432:5432 postgres:9.6

Note

This particular docker run command produces a volatile database. Stopping and
starting it again will cause you to lose any data you pushed into it.

Command

Then, simply run the default Guillotina command g.

g

Which should give you output like:

$ g
Could not find the configuration file config.yaml. Using default settings.
======== Running on http://0.0.0.0:8080 ========
(Press CTRL+C to quit)

The g executable allows you to potentially run a number of commands with Guillotina.
The default command is serve if none provided; however, you can explicitly run it with the
serve command name as well.

g serve

The serve command also takes --host and --port options to quickly change
without touching configuration.

In future sections, we'll explore other commands available.

Check installation

Open up Postman and do a basic GET against http://localhost:8080 with
basic auth credentials for root user and root password.

Also, do a GET on http://localhost:8080/db.

Congratulations! You have Guillotina running!

Useful run options

	--reload: auto reload on code changes. requires aiohttp_autoreload

	--profile: profile Guillotina while it's running

	--profile-output: where to save profiling output

	--monitor: run with aiomonitor. requires aiomonitor

References

	Quickstart

	Installation

	Configuraion

	Command Options

 Configuration

Configuration

You may have wondered how running g command without any configuration and
options knew to connect and configure the database. Well, it's only because
we provide default settings in our application and documentation to make
that step easy.

In this section, we'll talk about working with the Guillotina configuration
system.

Getting started

Guillotina provides a command to bootstrap a configuration file for you.

g create --template=configuration

This will produce a config.yaml file in your current path. Inspect the file
to see what some of the default configuration options are.

Modifying configuration

A detailed list of configuration options and explanations can be found
in the configuration section of the docs.

Note

Guillotina also supports JSON configuration files

Configuration file

To specify a configuration file other than the name config.yaml, you can use
the -c or --config command line option.

g -c config-foobar.yaml

Installing applications

Guillotina applications are python packages that you install and then configure
in your application settings.

For an example, we'll go through installing swagger support.

pip install guillotina_swagger

Then, add this to your config.yaml file.

applications:
- guillotina_swagger

Finally, start Guillotina again and visit http://localhost:8080/@docs.

References

	Configuration Options

 Using the Guillotina API

Using the Guillotina API

Before we start using the Guillotina API, let's get us some test data to play with.

Using the testdata command, we'll populate our database with some data from
wikipedia.

g testdata --per-node=5 --depth=2 --container=container

Interacting with the API

You can use whatever you'd like but this training will mention use of Postman.

Open up Postman and do a GET on http://localhost:8080/db/container
with the username root and password root for basic auth.

We can not necessarily go over every single API but will touch on a few and
give a general understanding of how to explore and use the API.

Creating content

To create content, do a POST request on a container or folder object.

	
POST /db/container

	Create Item

Example request

POST /db/container HTTP/1.1
Accept: application/json
Content-Type: application/json
Authorization: Basic cm9vdDpyb290

{
 "@type": "Item",
 "id": "foobar"
}

Example response

HTTP/1.1 201 OK
Content-Type: application/json

{
 "@id": "http://localhost:8080/db/container/foobar",
 "@type": "Item",
 "parent": {
 "@id": "http://localhost:8080/db/container",
 "@type": "Container"
 },
 "creation_date": "2017-10-13T23:34:18.879391-05:00",
 "modification_date": "2017-10-13T23:34:18.879391-05:00",
 "UID": "f4ab591f22824404b55b66569f6a7502",
 "type_name": "Item",
 "title": null,
 "__behaviors__": [],
 "__name__": "foobar",
 "guillotina.behaviors.dublincore.IDublinCore": {
 "title": null,
 "description": null,
 "creation_date": "2017-10-13T23:34:18.879391-05:00",
 "modification_date": "2017-10-13T23:34:18.879391-05:00",
 "effective_date": null,
 "expiration_date": null,
 "creators": [
 "root"
],
 "tags": null,
 "publisher": null,
 "contributors": [
 "root"
]
 }
}

	Request Headers

	
	Authorization [https://tools.ietf.org/html/rfc7235#section-4.2] -- Required token to authenticate

	Status Codes

	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] -- no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- Invalid Auth code

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] -- Error processing request

Adding behaviors

To add a dynamic behavior, we use the @behavior endpoint.

	
PATCH /db/container/foobar/@behaviors

	Add behavior

Example request

PATCH /db/container/foobar/@behaviors HTTP/1.1
Accept: application/json
Content-Type: application/json
Authorization: Basic cm9vdDpyb290

{
 "behavior": "guillotina.behaviors.attachment.IAttachment"
}

Example response

HTTP/1.1 201 OK
Content-Type: application/json

	Request Headers

	
	Authorization [https://tools.ietf.org/html/rfc7235#section-4.2] -- Required token to authenticate

	Status Codes

	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] -- no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- Invalid Auth code

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] -- Error processing request

Uploading files

Simple file uploads can be done with the @upload endpoint.

	
PATCH /db/container/foobar/@upload/file

	Upload file

Example request

PATCH /db/container/foobar/@upload/file HTTP/1.1
Authorization: Basic cm9vdDpyb290

<binary data>

Example response

HTTP/1.1 200 OK
Content-Type: application/json

	Request Headers

	
	Authorization [https://tools.ietf.org/html/rfc7235#section-4.2] -- Required token to authenticate

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- Invalid Auth code

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] -- Error processing request

Then, to download the file, use the @download endpoint.

	
GET /db/container/foobar/@download/file

	Download file

Example request

GET /db/container/foobar/@downlaod/file HTTP/1.1
Authorization: Basic cm9vdDpyb290

Example response

HTTP/1.1 200 OK
<binary data>

	Request Headers

	
	Authorization [https://tools.ietf.org/html/rfc7235#section-4.2] -- Required token to authenticate

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- Invalid Auth code

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] -- Error processing request

Uploading files with TUS

Guillotina also supports the TUS protocol using the @tusupload endpoint. The
TUS protocol allows you to upload large files in chunks and allows you to have
resumable uploads.

First, initialize the TUS upload with a POST

	
POST /db/container/foobar/@tusupload/file

	Upload file

Example request

POST /db/container/foobar/@tusupload/file HTTP/1.1
Authorization: Basic cm9vdDpyb290
UPLOAD-LENGTH: 2097152
TUS-RESUMABLE: 1

Example response

HTTP/1.1 200 OK
Content-Type: application/json

	Request Headers

	
	Authorization [https://tools.ietf.org/html/rfc7235#section-4.2] -- Required token to authenticate

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- Invalid Auth code

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] -- Error processing request

Next, upload the chunks(here we're doing chunks of 1MB):

	
PATCH /db/container/foobar/@tusupload/file

	Upload file

Example request

PATCH /db/container/foobar/@tusupload/file HTTP/1.1
Authorization: Basic cm9vdDpyb290
Upload-Offset: 0
TUS-RESUMABLE: 1
CONTENT-LENGTH: 1048576

< binary data >

Example response

HTTP/1.1 200 OK
Content-Type: application/json

	Request Headers

	
	Authorization [https://tools.ietf.org/html/rfc7235#section-4.2] -- Required token to authenticate

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- Invalid Auth code

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] -- Error processing request

And final chunk of 1MB:

	
PATCH /db/container/foobar/@tusupload/file

	Upload file

Example request

PATCH /db/container/foobar/@tusupload/file HTTP/1.1
Authorization: Basic cm9vdDpyb290
Upload-Offset: 1048576
TUS-RESUMABLE: 1
CONTENT-LENGTH: 1048576

< binary data >

Example response

HTTP/1.1 200 OK
Content-Type: application/json

	Request Headers

	
	Authorization [https://tools.ietf.org/html/rfc7235#section-4.2] -- Required token to authenticate

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- Invalid Auth code

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] -- Error processing request

Unknown upload size

Guillotina's TUS implementation has support for the Upload-Defer-Length header.
This means you can upload files with an unknown final upload size.

In order to implement this correctly, you will need to provide the
Upload-Defer-Length: 1 header and value on the initial POST to start the TUS
upload. You are then not required to provide the UPLOAD-LENGTH header.

Then, before or on your last chunk, provide a UPLOAD-LENGTH value to let
TUS know the upload can not finish.

Simultaneous TUS uploads

Guillotina's TUS implementation also attempts to prevent simultaneous uploaders.

If two users attempt to start an upload on the same object + field at the same
time, a 412 error will be thrown. Guillotina tracks upload activity to detect this.
If there is no activity detected for 15 seconds with an unfinished TUS upload,
no error is thrown.

To override this, send the TUS-OVERRIDE-UPLOAD: 1 header.

Modifying permissions

The @sharing endpoint is available to inspect and modify permissions on an object.

	
GET /db/container/foobar/@sharing

	Get sharing information

Example request

GET /db/container/foobar/@sharing HTTP/1.1
Authorization: Basic cm9vdDpyb290

Example response

HTTP/1.1 201 OK
Content-Type: application/json

{
 "local": {
 "roleperm": {},
 "prinperm": {},
 "prinrole": {
 "root": {
 "guillotina.Owner": "Allow"
 }
 }
 },
 "inherit": [
 {
 "@id": "http://localhost:8080/db/container",
 "roleperm": {},
 "prinperm": {},
 "prinrole": {
 "root": {
 "guillotina.ContainerAdmin": "Allow",
 "guillotina.Owner": "Allow"
 }
 }
 }
]
}

	Request Headers

	
	Authorization [https://tools.ietf.org/html/rfc7235#section-4.2] -- Required token to authenticate

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- Invalid Auth code

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] -- Error processing request

To modify, we use the same endpoint but with a POST.

	
POST /db/container/foobar/@sharing

	Add local permissions

Example request

POST /db/container/foobar/@sharing HTTP/1.1
Content-Type: application/json
Authorization: Basic cm9vdDpyb290

{
 "prinperm": [
 {
 "principal": "foobar",
 "permission": "guillotina.ModifyContent",
 "setting": "Allow"
 }
]
}

Example response

HTTP/1.1 201 OK
Content-Type: application/json

{}

	Request Headers

	
	Authorization [https://tools.ietf.org/html/rfc7235#section-4.2] -- Required token to authenticate

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- Invalid Auth code

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] -- Error processing request

There are three types of permission settings you can modify:

	prinperm: principal + permission

	prinrole: principal + role

	roleperm: role + permission

Each change can use the following settings:

	Allow : you set it on the resource and the children will inherit

	Deny : you set in on the resource and the children will inherit

	AllowSingle : you set in on the resource and the children will not inherit

	Unset : you remove the setting

Exploring the API with Swagger

In the previous step, we installed guillotina_swagger. With Swagger, we can
inspect any context and explore the API.

Visit http://localhost:8080/@docs

[image: alt text]

click the Authorize button

[image: alt text]

The Base API Endpoint setting is what the current context is that you're exploring
on. If you create content at /db/container/foobar and want to explore that
content's API, you should change the URL. Different content types will have
different services available.

References

	REST API

	Behaviors

	Security

 AsyncIO

AsyncIO

Python’s asyncio library allows you to run single threaded "concurrent"
code using coroutines inside an event loop.

The event loop is designed for I/O over sockets and other resources,
it is especially good for working with client/server network connections.

Python >= 3.4(best features and performance in 3.6)

Explanation

Benefits

The event loop allows you to handle a larger number of network connections at once.

No network blocks, so you can have long running connections with very little performance
impact (HTML5 sockets for example).

How web servers are typically designed

	(Pyramid, Flash, Plone, etc)

	Processes X Threads = Total number of concurrent connections that can be handled at once.

	Client makes a request to web server, request is assigned thread, thread handle request and sends response

	If no threads available, request is blocked, waiting for an open thread

	Threads are expensive (CPU), Processes are expensive on RAM

How it works with AsyncIO

	All requests are thrown on thread loop

	Since we don’t block on network traffic, we can juggle many requests at the same time

	Modern web application servers connect with many different services that can
potentially block on network traffic — BAD

	Limiting factor is maxed out CPU, not costly thread switching between requests — GOOD

Where is network traffic used?

	Web Client/App Server

	App Server/Database

	App Server/Caching(redis)

	App Server/OAUTH

	App Server/Cloud storage

	App Server/APIs(gdrive, m$, slack, etc)

Implementation details

In order to benefit, the whole stack needs to be asyncio-aware.

Anywhere in your application server that is not and does network traffic
WILL BLOCK all other connections while it is doing its network traffic
(example: using the requests library instead of aiohttp)

Basics

Get active event loop or create new one

Run coroutine inside event loop with asyncio.run_until_complete

import asyncio

async def hello():
 print('hi')

event_loop = asyncio.get_event_loop()
event_loop.run_until_complete(hello())

Basics(2)

asyncio.run_until_complete automatically wraps your coroutine into a Future
object and waits for it to finish.

asyncio.ensure_future will wrap a coroutine in a future and return it to you

So you can schedule multiple coroutines that can run at the same time

import asyncio

async def hello1():
 await asyncio.sleep(0.5)
 print('hi 1')

async def hello2():
 print('hi 2')

event_loop = asyncio.get_event_loop()
future1 = asyncio.ensure_future(hello1(), loop=event_loop)
future2 = asyncio.ensure_future(hello2(), loop=event_loop)
event_loop.run_until_complete(future2)
event_loop.run_until_complete(future1)

Long running tasks

You can also schedule long running tasks on the event loop.

The tasks can run forever…

“Task” objects are the same as “Future” objects(well, close)

import asyncio
import random

async def hello_many():
 while True:
 number = random.randint(0, 3)
 await asyncio.sleep(number)
 print('Hello {}'.format(number))

event_loop = asyncio.get_event_loop()
task = asyncio.Task(hello_many())
print('task running now...')
event_loop.run_until_complete(asyncio.sleep(10))
print('we waited 10 seconds')
task.cancel()
print('task cancelled')

ALL YOUR ASYNC BELONGS TO US

gotcha

If you want part of your code to be async(say a function), the complete stack of
the caller must be async and running on the event loop.

import asyncio

async def print_foobar1():
 print('foobar1')

async def print_foobar2():
 print('foobar2')

async def foobar():
 await print_foobar1()
 print_foobar2() # won't work, never awaited

event_loop = asyncio.get_event_loop()
event_loop.run_until_complete(foobar())
print_foobar1() # won't work, never awaited
await print_foobar1() # error, not running in event loop

"multi" processing

AsyncIO isn't really multiprocessing but it gives you the illusion of it.

A simple example can be shown with the asyncio.gather function.

import asyncio
import aiohttp

async def download_url(url):
 async with aiohttp.ClientSession() as session:
 resp = await session.get(url)
 text = await resp.text()
 print(f'Downloaded {url}, size {len(text)}')

event_loop = asyncio.get_event_loop()
event_loop.run_until_complete(asyncio.gather(
 download_url('https://www.google.com'),
 download_url('https://www.facebook.com'),
 download_url('https://www.twitter.com'),
 download_url('https://www.stackoverflow.com')
))

asyncio loops

Using yield with loops allows you to "give up" execution on every iteration of the loop.

import asyncio

async def yielding():
 for idx in range(5):
 print(f'Before yield {idx}')
 yield

async def foobar2():
 async for idx in yielding():
 print(f"Yay, I've been yield'd {idx}")

event_loop = asyncio.get_event_loop()
event_loop.run_until_complete(foobar2())

Scheduling

loop.call_later: arrange to call on a delay
loop.call_at: arrange function to be called at specified time

Executors

An executor is available to use when you have non-async code that needs to be made async.

A typical executor is a thread executor. This means, anything you run in an executor
is being thrown in a thread to run.

It’s worse to have non-async code than to use thread executors.

Executors are also good for CPU bound code.

import asyncio
import requests
import concurrent.futures

def download_url(url):
 resp = requests.get(url)
 text = resp.content
 print(f'Downloaded {url}, size {len(text)}')

async def foobar():
 print('foobar')

executor = concurrent.futures.ThreadPoolExecutor(max_workers=5)

event_loop = asyncio.get_event_loop()
event_loop.run_until_complete(asyncio.gather(
 event_loop.run_in_executor(executor, download_url, 'https://www.google.com'),
 event_loop.run_in_executor(executor, download_url, 'https://www.facebook.com'),
 event_loop.run_in_executor(executor, download_url, 'https://www.twitter.com'),
 event_loop.run_in_executor(executor, download_url, 'https://www.stackoverflow.com'),
 foobar()
))

Subprocess

Python also provides a very neat asyncio subprocess module.

import asyncio

async def run_cmd(cmd):
 print(f'Executing: {" ".join(cmd)}')
 process = await asyncio.create_subprocess_exec(*cmd, stdout=asyncio.subprocess.PIPE)
 out, error = await process.communicate()
 print(out.decode('utf8'))

event_loop = asyncio.get_event_loop()
event_loop.run_until_complete(asyncio.gather(
 run_cmd(['sleep', '1']),
 run_cmd(['echo', 'hello'])
))

 Extending

Extending

In our training, we'll be working on creating a simple chat application.

To extend Guillotina, we need to write a Python package.

Let's start by using the cookiecutter to bootstrap an application for us.

g create --template=application

Follow the prompts and name your application guillotina_chat.

Then,

cd guillotina_chat
python setup.py develop

	Configuration

	Content types

	Install an addons

	Permissions/Role

	Event subscribers

	Users

	Serialize content

	Defining a custom serialization

	Services

	Async Utilities

	Websockets

	Static files

 Configuration

Configuration

All application extension configuration is defined with Guillotina's configure
module and the app_settings object.

Defining content types, behaviors, services, etc all require the use of the
configure module. Guillotina reads all the registered configuration in code
for each install application and loads it.

app_settings

Guillotina also provides a global app_settings object::

from guillotina import app_settings

This object contains all the settings from your config.yaml file as well as
any additional configuration settings defined in addons.

app_settings has an order of precedence it will use pick settings from:

	guillotina's default settings

	each application in order it is defined can override default guillotina settings

	config.yaml takes final precedence over all configuration

app_settings has an extra key 'file' that contains the path of the
configuration file, allowing relative paths to be used in an application
settings.

 Content types

Content types

For chatting, we'll need a content type for conversations and messages.

Create a content.py file in your application and create the content types.

from guillotina import configure, content, Interface, schema

class IConversation(Interface):

 users = schema.List(
 value_type=schema.TextLine()
)

@configure.contenttype(
 type_name="Conversation",
 schema=IConversation,
 behaviors=["guillotina.behaviors.dublincore.IDublinCore"],
 allowed_types=['Message'])
class Conversation(content.Folder):
 pass

class IMessage(Interface):
 text = schema.Text(required=True)

@configure.contenttype(
 type_name="Message",
 schema=IMessage,
 behaviors=[
 "guillotina.behaviors.dublincore.IDublinCore",
 "guillotina.behaviors.attachment.IAttachment"
])
class Message(content.Item):
 pass

In order for Guillotina to detect your configuration, you'll need to add
a scan call inside your includeme function in the __init__.py file.

configure.scan('guillotina_chat.content')

Test it out

Open up Postman and test creating a conversation and message instead of it.

 Install an addons

Install an addons

Guillotina differentiates applications from addons.

An application is a python package you install into your environment and add to
your list of applications in the configuration file.

Addons on the otherhand are when you want to perform installation logic into
a container.

Define addon

To define an addon for Guillotina, we use the @configure.addon decorator
in the install.py file.

For our case, we want to create a Folder with all our conversations with some
default permissions.

from guillotina import configure
from guillotina.addons import Addon
from guillotina.content import create_content_in_container
from guillotina.interfaces import IRolePermissionManager

@configure.addon(
 name="guillotina_chat",
 title="Guillotina server application python project")
class ManageAddon(Addon):

 @classmethod
 async def install(cls, container, request):
 if not await container.async_contains('conversations'):
 conversations = await create_content_in_container(
 container, 'Folder', 'conversations',
 id='conversations', creators=('root',),
 contributors=('root',))
 roleperm = IRolePermissionManager(conversations)
 roleperm.grant_permission_to_role(
 'guillotina.AddContent', 'guillotina.Member')
 roleperm.grant_permission_to_role(
 'guillotina.AccessContent', 'guillotina.Member')

 @classmethod
 async def uninstall(cls, container, request):
 registry = request.container_settings # noqa
 # uninstall logic here...

Testing

Then, using Postman, do a POST request to the @addons endpoint:

{"id": "guillotina_chat"}

 Permissions/Role

Permissions/Role

Permissions are defined in your application code.

For our app, we'll create roles that users are granted inside a conversation.

Add the following inside your __init__.py file.

configure.role("guillotina_chat.ConversationParticipant",
 "Conversation Participant",
 "Users that are part of a conversation", False)
configure.grant(
 permission="guillotina.ViewContent",
 role="guillotina_chat.ConversationParticipant")
configure.grant(
 permission="guillotina.AccessContent",
 role="guillotina_chat.ConversationParticipant")
configure.grant(
 permission="guillotina.AddContent",
 role="guillotina_chat.ConversationParticipant")

 Event subscribers

Event subscribers

Events in Guillotina are heavily influenced from zope events with the caveat
in that we support async event handlers.

For our chat application, we want to make sure every user that is part of a
conversation has permission to add new messages and view other messages.

A simple way to do this is with an event handler that modifies permissions.

A an subscribers.py file inside your application.

from guillotina import configure
from guillotina.interfaces import IObjectAddedEvent, IPrincipalRoleManager
from guillotina.utils import get_authenticated_user_id, get_current_request
from guillotina_chat.content import IConversation

@configure.subscriber(for_=(IConversation, IObjectAddedEvent))
async def container_added(conversation, event):
 user_id = get_authenticated_user_id(get_current_request())
 if user_id not in conversation.users:
 conversation.users.append(user_id)

 manager = IPrincipalRoleManager(conversation)
 for user in conversation.users or []:
 manager.assign_role_to_principal(
 'guillotina_chat.ConversationParticipant', user)

In order for Guillotina to detect your configuration, you'll need to add
a scan call inside your includeme function in the __init__.py file.

configure.scan('guillotina_chat.subscribers')

Test it out

Using Postman, add a Conversation and then a Message to that conversation
and then use the @sharing endpoint to inspect the assigned permissions.

 Users

Users

Guillotina does not come with any user provider OOTB and is designed to be
plugged in with other services.

However, there is a simple provider that stores user data in the database
called guillotina_dbusers that we will use for the purpose of our training.

Install guillotina_dbusers

Just use pip

pip install guillotina_dbusers

And add the guillotina_dbusers to the list of applications in your config.yaml.
Also make sure you are not overriding the auth_user_identifiers configuration
value in your config.yaml as guillotina_dbusers uses that to work.

After you restart guillotina, you can also install dbusers
into your container using the @addons endpoint:

POST /db/container/@addons
{
 "id": "dbusers"
}

Add users

Creating users is just creating a user object.

POST /db/container/users
{
 "@type": "User", "username": "foobar", "email": "foo@bar.com", "password": "foobar"
}

Logging in can be done with the @login endpoint which returns a jwt token.

POST /db/container/@login
{
 "username": "foobar", "password": "foobar"
}

Then, future requests are done with a Bearer token with the jwt token. For
example, to create a conversation with your user:

POST /db/container/conversations
Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE1MDgwMTU0OTcsImlkIjoiZm9vYmFyIn0.vC6HHuLmcf8d1I7RpOTxAeHQDfMRjsOoBS-xH4Q1sdw
{
 "@type": "Conversation",
 "title": "New convo with foobar2",
 "users": ["foobar", "foobar2"]
}

 Serialize content

Serialize content

Guillotina provides default serializations for content. It provides mechanisms
for giving full content serialization of interfaces and behaviors as well as
summary serializations that show in listings.

For customize a serialization for a type, you need to provide a multi adapter
for the IResourceSerializeToJsonSummary or IResourceSerializeToJson interfaces.

For our use-case, we want to make sure to include the creation_date and
some other data in the summary serialization of conversations and messages
so we can get all the info we need for our application without doing full objet serialization.

Defining a custom serialization

Let's define these serializers in a in a file named serialize.py.

from guillotina import configure
from guillotina.interfaces import IResourceSerializeToJsonSummary
from guillotina.json.serialize_content import DefaultJSONSummarySerializer
from guillotina.utils import get_owners
from guillotina_chat.content import IConversation, IMessage
from zope.interface import Interface

@configure.adapter(
 for_=(IConversation, Interface),
 provides=IResourceSerializeToJsonSummary)
class ConversationJSONSummarySerializer(DefaultJSONSummarySerializer):
 async def __call__(self):
 data = await super().__call__()
 data.update({
 'creation_date': self.context.creation_date,
 'title': self.context.title,
 'users': self.context.users
 })
 return data

@configure.adapter(
 for_=(IMessage, Interface),
 provides=IResourceSerializeToJsonSummary)
class MessageJSONSummarySerializer(DefaultJSONSummarySerializer):
 async def __call__(self):
 data = await super().__call__()
 data.update({
 'creation_date': self.context.creation_date,
 'text': self.context.text,
 'author': get_owners(self.context)[0]
 })
 return data

And make sure to add the scan.

configure.scan('guillotina_chat.serialize')

 Services

Services

Services are synonymous with what other frameworks might call endpoints or views.

For the sake of our application, let's use services for getting a user's most
recent conversations and messages for a conversation.

Creating the services

We'll name our endpoints @get-conversations and @get-messages and put them
in a file named services.py.

from guillotina import configure
from guillotina.component import get_multi_adapter
from guillotina.interfaces import IContainer, IResourceSerializeToJsonSummary
from guillotina.utils import get_authenticated_user_id
from guillotina_chat.content import IConversation

@configure.service(for_=IContainer, name='@get-conversations',
 permission='guillotina.Authenticated')
async def get_conversations(context, request):
 results = []
 conversations = await context.async_get('conversations')
 user_id = get_authenticated_user_id(request)
 async for conversation in conversations.async_values():
 if user_id in getattr(conversation, 'users', []):
 summary = await get_multi_adapter(
 (conversation, request),
 IResourceSerializeToJsonSummary)()
 results.append(summary)
 results = sorted(results, key=lambda conv: conv['creation_date'])
 return results

@configure.service(for_=IConversation, name='@get-messages',
 permission='guillotina.AccessContent')
async def get_messages(context, request):
 results = []
 async for message in context.async_values():
 summary = await get_multi_adapter(
 (message, request),
 IResourceSerializeToJsonSummary)()
 results.append(summary)
 results = sorted(results, key=lambda mes: mes['creation_date'])
 return results

And make sure to add the scan.

configure.scan('guillotina_chat.services')

 Async Utilities

Async Utilities

An async utility is a utility that run persistently on the asyncio event loop.
It is useful for long running tasks.

For our training, we're going to use an async utility with a queue to send
messages to logged in users.

Create a utility.py file and put the following code in it.

from guillotina import configure
from guillotina.async_util import IAsyncUtility
from guillotina.component import get_multi_adapter
from guillotina.interfaces import IResourceSerializeToJsonSummary
from guillotina.renderers import GuillotinaJSONEncoder
from guillotina.utils import get_authenticated_user_id, get_current_request

import asyncio
import json
import logging

logger = logging.getLogger('guillotina_chat')

class IMessageSender(IAsyncUtility):
 pass

@configure.utility(provides=IMessageSender)
class MessageSenderUtility:

 def __init__(self, settings=None, loop=None):
 self._loop = loop
 self._settings = {}
 self._webservices = []

 def register_ws(self, ws, request):
 ws.user_id = get_authenticated_user_id(request)
 self._webservices.append(ws)

 def unregister_ws(self, ws):
 self._webservices.remove(ws)

 async def send_message(self, message):
 summary = await get_multi_adapter(
 (message, get_current_request()),
 IResourceSerializeToJsonSummary)()
 await self._queue.put((message, summary))

 async def initialize(self, app=None):
 self._queue = asyncio.Queue()

 while True:
 try:
 message, summary = await self._queue.get()
 for user_id in message.__parent__.users:
 for ws in self._webservices:
 if ws.user_id == user_id:
 await ws.send_str(json.dumps(
 summary, cls=GuillotinaJSONEncoder))
 except Exception:
 logger.warn(
 'Error sending message',
 exc_info=True)
 await asyncio.sleep(1)

Async utilities must implement a initialize method and performs the async
task. In our case, it is creating a queue and waiting to process messages
in the queue.

For us, we will send messages to registered websockets.

Make sure, like all other configured moduels, to ensure this file is scanned
by the packages __init__.py file.

Sending messages

We'll need to add another event subscriber to the subscribers.py file
in order for the utility to know to send out new messages to registered
web serveices. So your utility.py file will now look like:

from guillotina import configure
from guillotina.component import get_utility
from guillotina.interfaces import IObjectAddedEvent, IPrincipalRoleManager
from guillotina.utils import get_authenticated_user_id, get_current_request
from guillotina_chat.content import IConversation, IMessage
from guillotina_chat.utility import IMessageSender

@configure.subscriber(for_=(IConversation, IObjectAddedEvent))
async def container_added(conversation, event):
 user_id = get_authenticated_user_id(get_current_request())
 if user_id not in conversation.users:
 conversation.users.append(user_id)

 manager = IPrincipalRoleManager(conversation)
 for user in conversation.users or []:
 manager.assign_role_to_principal(
 'guillotina_chat.ConversationParticipant', user)

@configure.subscriber(for_=(IMessage, IObjectAddedEvent))
async def message_added(message, event):
 utility = get_utility(IMessageSender)
 await utility.send_message(message)

 Websockets

Websockets

Websocket support is built-in to Guillotina.

It's as simple as using an aiohttp websocket in a service.

Create a ws.py file and put the following code in:

from aiohttp import web
from guillotina import configure
from guillotina.component import get_utility
from guillotina.interfaces import IContainer
from guillotina.transactions import get_tm
from guillotina_chat.utility import IMessageSender

import aiohttp
import logging

logger = logging.getLogger('guillotina_chat')

@configure.service(
 context=IContainer, method='GET',
 permission='guillotina.AccessContent', name='@conversate')
async def ws_conversate(context, request):
 ws = web.WebSocketResponse()
 utility = get_utility(IMessageSender)
 utility.register_ws(ws, request)

 tm = get_tm(request)
 await tm.abort(request)
 await ws.prepare(request)

 async for msg in ws:
 if msg.tp == aiohttp.WSMsgType.text:
 # ws does not receive any messages, just sends
 pass
 elif msg.tp == aiohttp.WSMsgType.error:
 logger.debug('ws connection closed with exception {0:s}'
 .format(ws.exception()))

 logger.debug('websocket connection closed')
 utility.unregister_ws(ws)

 return {}

Here, we use the utility = get_utility(IMessageSender) to get our async
utility we defined previously. Then we register our webservice with
utility.register_ws(ws, request).

Our web service is simple because we do not need to receive any messages and
the async utility sends out the messages.

Using websockets

In order to use websockets, you need to request a websocket token first.

GET /db/container/@wstoken
Authentication Bearer <jwt token>

Then, use this token to generate a webservice URL(JavaScript example here):

var url = 'ws://localhost:8080/db/container/@conversate?ws_token=' + ws_token;
SOCKET = new WebSocket(url);
SOCKET.onopen = function(e){
};
SOCKET.onmessage = function(msg){
 var data = JSON.parse(msg.data);
};
SOCKET.onclose = function(e){
};

SOCKET.onerror = function(e){
};

 Static files

Static files

To pull this all together, we'll create our web application that uses the api
to provide a very simple chat experience.

Copy the following files into a new folder static in your application:

	chat.js.

	index.html.

	main.css.

Configure

Then, we'll setup Guillotina to serve the folder.

Modify your config.yaml file to add:

static:
 status: ./static

JS Applications

You can also serve the static files in a way where it works with JavaScript
applications that need to be able to translate URLs from something other than root.

jsapps:
 static: ./static

With this configuration any request to a url like http://localhost:8080/static/foo/bar
will serve files from http://localhost:8080/static.

 Commands

Commands

Guillotina comes with a great set of commands you
can use to help debug and inspect your install.

We've already gone through the serve, create and testdata commands so we'll
now cover shell and run.

Make sure to also read the commands reference in the docs
to learn how to create your own commands.

Shell

The shell command allows you to get an interactive prompt into guillotina.

From here, you can connect to the database, accees objects and commit new data.

g -c config.yml shell

Then, to connect to the database and get your container object.

txn = await use_db('db')
container = await use_container('container')

From here, you can access objects:

conversations = await container.async_get('conversations')
await conversations.async_keys()

Run

The run command allows you to run a python script directly.

g -c config.yaml run --script=path/to/script.py

In order for you to utilize this, the script must have an async function named
run inside it.

async def run(container):
 pass

 Kitchen Sink

Kitchen Sink

This part of the training material is going to talk about the
guillotina_kitchensink [https://github.com/guillotinaweb/guillotina_kitchensink]
repository.

This repository gives you a working configuration and install of:

	guillotina_dbusers: Store and manage users on the database

	guillotina_elasticsearch: Index on content in elasticsearch

	guillotina_swagger: Access site swagger definition at http://localhost:8080/@docs

	guillotina_rediscache: Cache db objects in redis

The components it runs as part of the docker compose file are:

	postgresql

	elasticsearch

	redis

First off, start by cloning the repository and starting it.

git clone https://github.com/guillotinaweb/guillotina_kitchensink.git
cd guillotina_kitchensink
docker-compose -f docker-compose.yaml run --rm --service-ports guillotina

Add some content using Postman and then let's do an elasticsearch query:

POST /db/container/@search
{
 "query": {
 "bool": {
 "must": [
 {
 "match": {
 "title": "foobar"
 }
 }
]
 }
 }
}

 HTTP Routing Table

 HTTP Routing Table

 /db

 		 	

 		
 /db	

 	
 	
 GET /db/container/foobar/@download/file	

 	
 	
 GET /db/container/foobar/@foobar	

 	
 	
 GET /db/container/foobar/@sharing	

 	
 	
 POST /db/container	

 	
 	
 POST /db/container/foobar/@sharing	

 	
 	
 POST /db/container/foobar/@tusupload/file	

 	
 	
 PATCH /db/container/foobar/@behaviors	

 	
 	
 PATCH /db/container/foobar/@tusupload/file	

 	
 	
 PATCH /db/container/foobar/@upload/file	

 Index

Index

 <no title>

Note

Scanning

If your service modules are not imported at run-time, you may need to provide an
additional scan call to get your services noticed by guillotina.

In your application __init__.py file, you can simply provide a scan call like:

from guillotina import configure
def includeme(root):
 configure.scan('my.package')

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 The Python AsyncIO REST API Framework

 		
 About

 		
 History lesson

 		
 Forked dependency packages

 		
 What it isn’t

 		
 Quickstart

 		
 Postgresql installation instructions

 		
 Creating a container

 		
 REST API Reference

 		
 Application

 		
 Database

 		
 Container

 		
 Folder

 		
 Item

 		
 Installation/Configuration/Deployment

 		
 Installation

 		
 Running

 		
 Configuration

 		
 Databases

 		
 Static files

 		
 JavaScript Applications

 		
 Root user password

 		
 CORS

 		
 Applications

 		
 Async utilities

 		
 Middleware

 		
 aiohttp settings

 		
 JWT Settings

 		
 Miscellaneous settings

 		
 Transaction strategy

 		
 Connection class

 		
 Production

 		
 Nginx front

 		
 Logging

 		
 Example guillotina configuration

 		
 Request logging example

 		
 Available Loggers

 		
 Awesome Guillotina

 		
 Developer documentation

 		
 Narrative

 		
 Installation

 		
 Generating the initial application

 		
 Configuring

 		
 Creating to do type

 		
 Running

 		
 Creating your todo list

 		
 Security

 		
 Roles

 		
 Python helper functions

 		
 REST APIs

 		
 Roles

 		
 Requests security

 		
 Databases, Application and static files objects

 		
 Roles in guillotina container objects

 		
 Content Related

 		
 Container/App Roles

 		
 Default roles on Guillotina Container

 		
 Default groups on Guillotina Container

 		
 Applications

 		
 Community Addons

 		
 Creating

 		
 Initialization

 		
 Configuration

 		
 Add-ons

 		
 Creating an add-on

 		
 Layers

 		
 Services

 		
 Defining a service

 		
 Class-based services

 		
 Special cases

 		
 Content types

 		
 Defining content types

 		
 Behaviors

 		
 Definition of a behavior

 		
 Static behaviors

 		
 Dynamic Behaviors

 		
 Out-of-the-box Behaviors

 		
 Interfaces

 		
 Common interfaces

 		
 Commands

 		
 Available commands

 		
 Command Options

 		
 Running commands

 		
 Creating commands

 		
 Application Configuration

 		
 service

 		
 content type

 		
 behavior

 		
 addon

 		
 adapter

 		
 subscriber

 		
 utility

 		
 permission

 		
 role

 		
 grant

 		
 grant_all

 		
 Overriding Configuration

 		
 Design

 		
 JavaScript application development focus

 		
 Speed

 		
 Asynchronous

 		
 Security

 		
 Style

 		
 Persistence

 		
 Saving objects

 		
 Transactions

 		
 Blobs

 		
 Registering a blobs

 		
 Router

 		
 How URLs are routed

 		
 Route matching

 		
 Providing your own router

 		
 Exceptions

 		
 Custom exception response

 		
 Fields

 		
 Available fields

 		
 Patch field

 		
 API Reference

 		
 guillotina.content

 		
 guillotina.utils

 		
 Training

 		
 Introduction

 		
 Using the training materials

 		
 Installing Guillotina

 		
 with pip

 		
 Starting Guillotina

 		
 Command

 		
 Check installation

 		
 Useful run options

 		
 Configuration

 		
 Getting started

 		
 Modifying configuration

 		
 Configuration file

 		
 Installing applications

 		
 Using the Guillotina API

 		
 Interacting with the API

 		
 Creating content

 		
 Adding behaviors

 		
 Uploading files

 		
 Uploading files with TUS

 		
 Modifying permissions

 		
 Exploring the API with Swagger

 		
 AsyncIO

 		
 Explanation

 		
 Basics

 		
 Basics(2)

 		
 Long running tasks

 		
 ALL YOUR ASYNC BELONGS TO US

 		
 “multi” processing

 		
 asyncio loops

 		
 Scheduling

 		
 Executors

 		
 Subprocess

 		
 Extending

 		
 Configuration

 		
 Content types

 		
 Install an addons

 		
 Permissions/Role

 		
 Event subscribers

 		
 Users

 		
 Serialize content

 		
 Defining a custom serialization

 		
 Services

 		
 Async Utilities

 		
 Websockets

 		
 Static files

 		
 Commands

 		
 Shell

 		
 Run

 		
 Kitchen Sink

_static/img/auth-swagger.png
Modif

Authenticate
ouce i
Base API Endpoint URL:
http://localhost:8080/db/container Oper
Bdad Authorization Token:
addc Unin:
Or...
addc Username:
root
Password: Oper:
all_p seee armise
Authorize Cancel
ex Oper:
async-catalog-reindex Asynchronously reir

_static/img/swagger.png
